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Abstract

The purpose of this article is to find conditions of existence of n-
periodic orbits for Mobius functions and determine all such orbits (in
the case of their existence).

Partl.

We start with concrete problem.

Problem.(Dutch Mathematical Olympiad,1983 and
Math Excalibur Vol.1,No.4, Problem 16)

Let a, b, ¢ be real numbers , with a, b, ¢ not equal, such that

1 1 1
a—&—g:t,b—l—f:t,c—i—f:t.
c a
Determine all possible value of ¢ and prove that abc + ¢t = 0.

Solution.
Obvious that a,b,c ¢ {0,t} . Also note that ¢ # 0,because otherwise

ab = bc = ca = —1 implies a?b?c? = —1.
Since a,b,c ¢ {0,t} then

1 1

=t b=

ot t 1 a b=h(a)

(1) b+-=t = c=1— = c=h(b) |,

f 1 a=h((c))

ct+—-=t a=

a ) t—c

where h(z) := ; for any x € R\ {0,t}.
-z
We can see that for z € {a,b,c} holds z = h (h (h(z))),.
that is function h (h (h(z))) have three distinct fixed points.
_ 1 2 —te —1
Since for z € {a,b,c} wehave h (h(h(z))) = . i T P v
1
t —
) t—x
t* —tx—1

then h(h(h(z)) =z <= < r =

-tz —2t+z
Br—t222 —2Ax+ 22 =2 —tr — 1 <= (1—t2) (mQ—xt—i—l) =0
implies t2 = 1, because otherwise quadratic equation z? —at+1 =0
have three distinct roots a,b and ¢, that is a contradiction.

Let t2 = 1.
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Then h(z) # t for any © € R\ {0,t} (because h(z) =t <
2 _
% =t < x = % = 0) and, therefore,
-z
h: RN A{0,t} — R\ {0,t}.
Also for any z € R\ {0,t} we have
t

1 -z t—x
h(h(m)):t T =5 0 1- and
_t—m
2 —1—tx —tx

M @) = 5 s T—e—airs

that is any x € R\ {0,¢} is fixed point for ho ho h.

Noting that h (z) #z and h(h(x)) # x for any € R\ {0,¢} because
hiz)=2 < 2> —ter+1=0and h(h(z)) =2 < ta’—az+t=0 <
2?2 —tx +1 =0, where equation 2> — tx + 1 = 0 have no solutions

in R we can conclude that set of all triples of real numbers (a, b, ¢)

such that a, b, ¢ are distinct and satisfies (1)

can be parameterized by z € R\ {0,¢} as follows

1 —t
(a,b,c) = (ac, )m )
t—x tx

1 —t
Thus, t? = 1 and abc:x~t .mt =—t < abc+t=0.
-z x

Part 2. Terminology and notations.
In order to move forward we need to make some preparation.
Let f (x) be function with domain D C R such that f: D — D.
For any x € D we will consider the sequence (xy,),,~, defined
recursively as follows:

xo = z,21 := f (20),and for any n € N if x,, € D then z, 1 := f (z,).
Such sequence, infinite or finite, we call orbit of = created by f
and denote Oy (z) or simpler O (z).
If z,, € D for any n € N then orbit Oy () is infinite, otherwise
orbit is finite.
Let function fy be defined by fj () = = and for any natural n
we define recursively n-iterated function f,, by
fo=Ffofac1,mn €N, that is f1 (z) := f(z) and fi (z) := f (fn (2))
for any « € D.Thus, z,, = f, () ,n € N.
Using Math Induction we can prove that f, o fi, = fnam
for any n,m € N.
Indeed, for any n € N, assuming f, o f;, = fn+m Wwe obtain
for1ofm=(fofa)ofm="7Fo(fuofm)=1Fofarm= faritm.
By the way we obtain f,, o fi, = futm = fntn = fm © fn (although,
the operation of the composition is generally non-commutative).
Let € D be number such that z,, = <= f,, () =z for some m € N
then point x (which is fixed point of f,, ) we also call periodic.
Then orbit Oy () is periodic orbit and, of course, infinite.
In that case the smallest natural n such that z,, = x we will call
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main period of z and denote p(z).
Also if p(x) = n then correspondent orbit Oy (z) and point z we
call n-periodic. (Obvious that any period m is multiples of the
main period n, because if m = kn + r,where remainder r # 0 then
T = fn (@) = fontr (@) = (fin o fr) () = fr (x) .Since r < n = p(z) then
it is the contradiction).
If Oy (z) is periodic orbit with p(z) = n then x is fixed point
for function f,, that is solution of equation f, (z) = x.
Thus, point x is n-periodic of the following conditions are satisfied:
1. fi(@)eD,k=1,2,...,n—1;
2. fule)#z,k=1,2...,n—1;
3. faolz)==z.
Let Do, be subset of all x € D for which f generate infinite orbit.
If Do is non empty then restriction f on D, give us mapping
f Do — D.
Indeed, if x € Dy that is O (z) is infinite then O (f (z)) is subsequence
of O (z) and infinite as well.
Periodic orbit O (x) with p(x) = n such that zg, 21, ..., £,—1 not equal
we will call strictly periodic.
Applying this terminology to the problem, solved above, we can
formulate the following
Theorem.

1
Function z — h(z) = Pt RN\ {t} — R have strictly periodic
—x

orbit Oy, (z) with main period 3 if and only if t? = 1.
In that case for any x € R\ {0,t} orbit Oy (z) is strictly periodic
with p(z) = 3 and xh; (x) he (z) +¢ = 0.

Part 3. Generalization and modification
Generalization.
Let now n be any natural number and let 7, be set of all real ¢

1
such that function h (z) = P have periodic orbits of main
—x

period n.

We already know that 73 = {—1,1}. And we going to find 7,
effectively, find its explicit representation for all other n, but
first we will find 77 and 73

1. Let n =1, then

h(z) =z < x:% = at—2’=1 <+ 2> —at+1=0.
Thus we obtain that if A has fixed point x,or by the other
words has orbit with the period 1 then t? —4 >0 < [t| > 2.
Let |t| > 2. For each t such that |t| > 2 we have two fixed
points of h namely, solutions x1, z3 of equation z? —zt +1 =0
and, respectively, two infinite orbits
Oy (x) = (z,2, ..., xy...), ¢ € {x1,22}
and one infinite orbit
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t t t t
— ) =<4=,=,...,=,..p0 f h —2,2}.
Oy, <2) {2,2, = } or each t € {—2,2}

Thus 7; = (—00,2] U [2,00).
Remark. ;
It is not difficult to prove that in case |t| = 2 any x # 3

generate infinite non-periodic orbit.
For example if ¢ = 2 then we have
1 2-=z n—(n-1)z
On(z) = | =, , J e -~
n (@) (xQ—:r 3—2zx n+1-nzx )
if x # 1 and further we will see that in the case |t| > 2 orbit
Oy, (z) is infinite and non-periodic for any = # x1, zo.

2. Let n =2 and let Oy, (z) is periodical orbit with p(z) = 2.
Then
1 t—=x

h(h(z)) =2 < a;zt_ e a—

t—x
tr—ta?—r=t—z = tla?—at+1)=0 < t=0,
since #? — xt + 1 # 0.Thus T = {0} .
Let t = 0, then any point = # 0 generate periodical orbit

1 1
= — —_ ... ith = 2.
O () ( Lol )wm (@)

3. Let now n > 2 be any and let Oy, (z) is periodical orbite

with p(z) = n.It is mean that for z € R\ {0,t¢}, which generate

this orbit, holds hy (z),..., An—1 () # z,t and h,, (z) = z.

First note that g (y) := ty=1 RN {0,t} — R\ {0,¢} is inverse to h,
that is h (g (y)) = y,for any y # 0,9 (y) # ¢ and g (h (x)) = x for any

x #t,h(x)#0.

Also note that if O, () be periodic orbit with p(x) = n then numbers
x,hy () ,..., hn—1 () all different.

Indeed, assume that there are 0 <7 < j < n — 1 such that h; (x) = h; (z).
If i =0 then z = h; (z) contradict to x # hy (z) for any k=1,....,n — 1;
if ¢ > 0 then applying g we obtain

hi(2) = by (@) <= g(hi (@) = g(; (@) <= hiot (@) = hj1 (&) <= o <= = hj_1 (2)

that is contradiction as well.

So, further we don’t need to claim that numbers x, hy (), ..., hp—1 (2)
all different.

Enough to claim that hg (z) #t,k=1,2,...,n — L.

We will prove that h,, (z) ,which defined by recurrence

hn () = h (hp—1(z)),n € N with hg (x) = x can be represented in the

Py (x,t

Py
form h,, (z) = or shortly as —.

Qn (z,1) n
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1
Since hg (z) = % and hy (z) = T e claim
-z

P(J:x,PlleO:lQl:t—x.
P+ P, 1 Qn .
Also, since —— =h = we claim
n+1 (Qn t— Pn th_Pn

n+1 Qn and Qn-{-l - th - n
This implies P,y1 =tP, — P,_1,n € N and Qn =Pyl

Note that P, =t — x and let h,, (x) := ,n € NuU{0}.

n+
Since, ho (x) = ho (), h1 (z) = h1 (z) and for any n € NU {0} assuming
)

hn (x) = hy, (x) we obtain hyi1 (@) = h(hy (2)) = b (hy (7)) = hyg (@)
then by Math Induction h,, (z) = h,, (z) = for all n € NU {0}.

n+1

Condition h,, (x) = x is equivalent to =x < P,—xP,11=0.

n+1
Observation of cases n = 2,3 lead us to assumption

P, —xP,11 =R, (1) (x2 —at + 1)
where R (t) is the polynomial of degree n — 1.
In particularly Ry (t) = t, Rz (t) = t2—1, Ry (t) = t2—2t, R5 (t) = t*—3t2+1.
Since Py y1—2Pyi0 =t (P — 2Pyi1)—(Pyo1 — aP,) <= Ry (t) (22 —at+1) =
(2% —wt+1) (tR, (t) — Ry—1 (1)) and > — 2t + 1 # 0 (because n > 2)
we obtain for R, (¢) recurrence
(2) Ryt1(t) =tR, (t) — Ry—1 (t),n > 2
with initial condition Ry (t) = 1, Rs (t) = t.( Ro := 0).
Suppose on a while that |t| < 2 (this restriction on ¢ isn’t influence on
definition of the polynomial).

t
Then for ¢ := cos™! 5 ) we have t = 2cos p,t? — 2 =

2 cos 2¢ and recurrence (1) can be rewritten in the form
Ry, 41 =2cospR, — R,,_1,
Since R,, = ¢y cosnp + cosinnp and from Ry = 0, R; = 1 follows ¢; = 0,

1 =cysinp <= ¢y = —— then we obtain
sin

t
sinm sin (n ~cos™! <2)>
R, =R, (2cosp) = ? and R, (t) = ).

i t
S sin <cos—1 <2>>
Let T, (x) be Chebishev Polynomial of the First Kind defined by
T, (cos p) = cosnyp,
or, by recurrence T}, 41 — 227, +T,,_1 =0,n € Nand Ty = 1,7} = x.

We have (T;,(cos ¢)) = T, (cos p) (—sinp) = —nsinng =

Ty (cosp) = NEMne.
sin ¢
: T () . :
Polynomial U,_1 (z) = degree n — 1 we call Chebishev Polynomial
n
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of the Second Kind.
U, (z) satisfy to recurrence U, 1 = 22U,, — U,,—1, n € N, (the same as T,
but with different initial conditions: Uy = 1,U; = 2x).
Since U,y (1) = S0 O) g o, U N
ince U,,—1 (t) = sin (cos—L (1)) and Upy1 = 2tUp, — Up—1,n € N,
with U() = ]., Ul = 2t and Rn+2 (l‘) = tRn+1 (t) - Rn (t) ,n e N with
Ry (t) =1, Ry (t) =t we can see that

R () = Un_y (t

2
Now we can find all roots of polynomial R, ().
. km
- k
Since sglmpzo — ¥ n — gpziandn)[k,
Sm @ sin © ?é 0 n
k
we consider n — 1 different numbers ¢, = 2 cos —W, k=1,2,...n—1.
n
k in k
Easy to see that R, (tx) = R, <2 cos W) _ smby 0.
n k'Tr

sin —

So, t1,ta,...,t,—1 are n — 1 real solution of equatign R, (t) =0 and,
because deg R, (t) =n — 1, then t,ts,...,t,_1 are all roots of R, (t).
But we need only such of this roots, which can’t be roots of R, (t)
with m < n. That is only k coprime with n satisfy to this claim.

(If we assume opposite that R, (t) = 0 for some m € {1,2,....,n — 1}
then

RTIL (t) =0 < U’m—l (;) =0 <= sin <m . (30871 <t)> =0 <<

2
. ( 1 ( k’ﬂ')) . mkr
sin (m-cos™ | cos—= ) | = 0 < sin

mk is divisible by n <= m is divisible by n ( because gcd (k,n) = 1).

=0

That is we obtain a contradiction with m € {1,2,...,n — 1}).
Thus we have only ¢ (n) different ¢ which provide n—periodic orbits,
namely,

k
T, = {t |t = 2COS£, where k =1,2,...,n — 1 and ged (k,n) =1
n
In particular, if n = 6, then only k£ = 1,5 are coprime with 6,hence we
5
have t = 2005% =+v3and t= QCOS% = —\/g,that is Tg = {—\/g, \/3}

Now for each ¢ € 7,, we will find set D,, (¢) of all n—periodic x that is x
with p(z) =n.

k
Let ¢t = 2(:05—7T7 where k =1,2,...,n— 1 and ged (k,n) = 1.
n

Since Ry () =0, T] B (£) % 0, Rusr (£) = —Ro_1 (£) £ 0 and
k=1

(©1985-2018 Arkady Alt 6
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Loy 1= M,m =0,1,2,...
Rm+1 (t)
then we have
Ry () _ R, (1) Ry (1)

= _t n—9 = ——-—=
CTRO TR0

n (2)
sin | p - COS COS Sin
Since R, (t) = " "/ ofork=1,2,...

sin (cos1 (cos lmr)) sin <k7T>
n n
1,2,..

and ged (k,n) = 1,p € N then if n > 4 for m

(m+2)kr
Bpga () 00 n
we obtain z,, = m = .
Ryt (1) sin ((m +1) lmr)
n

k

Thus, for ¢t = 2cos T where k = 1,2,....,n— 1 and ged (k,n) =1 we have
n

D (t) =R\ {t0,z1,...,xn—3} and for any « € D (t) correspondent orbit

Oy, (z) is n—periodic.

Remark 1. .

For each t;, = 2 cos Wil , wherek =1,2,...,n—1and k L nset {e, hy,ha,....,hp_1}
n

is a cyclic group with respect to composition as multiplication, where

hn=ho=cand h;,' = hy_j,k=1,..,n— L.

Remark 2.

Since |t| < 2 then R, (t) # 0 for any n € N if |¢| > 2 and if at the

same time z isn’t root of equation 22 — xt 4+ 1 = 0 then equation

hn (z) =2 <= R, (t) (2® — ¢t + 1) = 0 have no solutions for any n € N

and, therefore, orbit Oy, (x) is infinite and non-periodic

Modification. .

Let’s consider the similar problem with respect to function h (z) = o
—x
namely, for any n € N we will find 7,, - set of all real ¢ such that function

h (z) have periodical orbits main period n.

-1
If n = 1, then equation z = pa— <= 22 — 2t — 1 = 0 have two solutions
t+ Vit +4
T2 = i Ak for any real ¢t.Thus, 7; = R and we have two orbits
Oy (1) = (21,21, ...) ,O% (x2) = (z2,22,...) .
— T —1
Let n = 2.Then z = — :tz—ta:—l—Ith(m) —

t—x
r—tP+tr=0—1t < t(a?Q—act—l)zoandsince
h(z) # x <= x? — 2t —1 # 0 we obtain that

1 1

7> = {0} and for any real x # 0,1 we have Oy, () = (z, -z, —, >
) x

Let n = 3. Since hy (z) # x implies 22 — 2t — 1 =0# 0,¢ # 0 and

(©1985-2018 Arkady Alt 7
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h (2) -1 -1 1
Xr = xr) = = = —
3 t_h2(x) . xr—t r—t B
, 1—ta +t2 1—tx+¢2
1-—t¢ t
T = T — 22— Ar+t2t—atP=1—tz+ 1?2 —

T—t—t+t2x —t3
22 (1) —at (P 41)—(#*+1) =0 < (t*+1) (2 —at — 1) =0 then
for x such that h; (z) # x,i = 1,2 the equation x = h3 (z) have no
solution in real numbers.

So, function h (z) = p— have no 3- periodical orbits in R and 73 = @.
z—

P, (x,t
As above we will use representation h, (z) = M or shortly as

Qn (z,1)

n

Qn

Py=x,P =—17Q0=17Q1;t—$~
P, -1 -
From —"t1 — = @n follows
Qn+1 t— & th - Pn

Qn
Pn+1 = _Qn and Qn+1 = th — Pn
This imply P41 =tP, + P,-1 and Q,, = — Py 11.

-1
Since hg (z) = % and hy (z) = T e have

Condition h,, () = x equivalent to — =z < P,+axP,1=0.

n+1
Observation of cases n = 1,2, 3 lead us to assumption h, (z) =z <=

P,+xzPy11 =R, (1) (az2 —xt — 1)
where R, (t) is the polynomial degree n — 1.
In particular Ry (t) = ¢, Rz (t) = t* + 1.
Let there is orbit with main period n > 1.Since 22 — 2t +1 #0
( because otherwise we have periodical orbit with main 1) then
Pn+1+17pn+2 :t(Pn+-rPn+1)+Pn—l+l‘Pn —
tRug1 () (22 —at = 1) + R (t) (22 — @t + 1) + Rypy (£) (2? —at + 1) <
(22 —wt — 1) (Ryg1 (t) — tR, (t) — Ry (8) =0
and we obtain for R, (z) recurrence
(3) Rui1(z)=tR, (t)+ Rp—1 (t) with initial condition
Ri(t)=1,Ry (t) =t.
Therefore, h, () =2 <= P, +2P,11 =0 <
R, (t) (2> —at—1) =0 < R, (t) =0since 2? — zt + 1 # 0.
We will prove, that for any n > 2 equation R,, (t) = 0 have no
nonzero solutions.
(case t = 0 ( there is 2-periodical orbit) must be excluded).
Because situation is different for n odd and n even we will
consider separately polynomials Ry, 41 (f) and polynomials

Ron (t) = LQZ (t)

Since Ryio=tR, 1+ R, =1t (tRn + Rnfl) + R, =
(t2 + 1) R, +tR,_1 and tR,,_1 = R,, — R,,_2 we obtain
Rn+2 = (t2 + 2) R, - R, 2.

Thus we consider two sequences:

(©1985-2018 Arkady Alt 8
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Rgn (t) NS N_U {0}7 which satisfy R2n+2 = (t2 + 2) Rgn - Rgn,Q, n>1
with Ry = 0, Ry =1 and Ra,—1 () ,n € Nywhich satisfy
Ronys = (£*+2) Rony1 — Ran—1, n>1and Ry =1,Ry = t* 4+ 1.

Lemma.

For all n € N holds:

i. Ropt1 > Rap—1 > 0;

ii. R2n+2 > Rgn > 0.

Proof.(by Math. Induction)

1.Base of induction.

Let n=1then R =t>+1>1=R; >0and Ry =t>+2>1=R, > 0.
2.Step of induction.

i. Let R2n+1 > Rop1 >0, then

Ronts — Rony1 = (2 + 1) Rant1 — Ran—1 > Rang1 — Ron—1 > 0,
50, Rony3 > Rang1 > 05

ii. Let R2n+2 > Rgn > O,then

R2n_+4 — RQn_Jr2 = (t* +1) Rony2 — Ron > Ronya — Rap > 0,

S0, R2n+4 > R2n+2 > 0.

Alternative proof.

Since characteristic equation 2?2 —tx — 1 = 0 for recurrence (3)

t—Vt2+4 t+Vt2+4
have roots x1 = tzvirtd <0,z = % with Vieta’s
properties z1 + xo =t and z120 = —1

then R,, = c12] + coxl,where ¢y, c2 can be determined from

initial conditions Ry =0, R, = 0.

Si ! L then, B, = 229
mce ¢ = ——F—— ,Cp = ——F—— en, - <
YT VETd T Vg4 " a

af—af _ af + (~x)"

For odd n we have R,, = = > 0.
To — T1 T2 —T1

For n = 2m we have

m%m - x%m 2m—2 2m—4_2 2m—2
Rom = =——— = (@ +21) (a3 "+ " i+ ") =
2 — X1

t (m%mfz + m%m%m% + ...+ xfmfz) .

Thus Ry, = —0 = g2m=2 4 g2m=452 4 4 22m=2 5,

Corollary.

From lemma immediately follows that R, (t) have no nonzero roots.

—1
So function h (x) = a— have no n—periodical orbits with n > 2.
-

Part 4 More generalization

Now we will show that the general problem about periodicity

b
of orbits for any Mébius Function g (z) = ax—td (where a, b, c,d
cx

satisfy to ad — be # 0 and ¢ # 0 ) can be reduced to the considered
above two cases.
First note, that for any linear function [ () = pz + ¢,p # 0 orbits
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of element 2 € R for Mobius Functions g and f =1"'ogol

have the same periodicity.

Indeed, we have

ho = (lilogol) o (lilogol) = (lilog)o(l olil) o(gol)=
(lilog)o(gol) =["to(gog)ol=1"togsol

and by Math Induction from supposition

hy =1"'0g, ol obtain hyy1 =hoh, = (I"1ogol)o(I7tog,ol) =
Ito(gogn)ol=1""og,ri0l.

Since f,, () =2 < (I"togpol)(z)=2 < (gnol)(z)=I(2) =
gn (L(x)) =1 (z) then orbit Oy (x) is n-periodic iff O, (I (x)) is n-periodic.

Lemma 2.

b
For any Mébius Function g (z) = cwc—i—i_—d with a,b,¢,d € R and
cx

ad —bc#0,c#0 there is linear function [ (x) = pz + ¢,such

that h(z) = (1L o g o 1) (z) = 294 =)

t—x
Proof. b
Let y = ar + . We will find p, ¢ such that
cx+d
N _a(pr+q)+b =
T4 clpr+q)+d Y s
a(pr+q)+b a(pr+q)+0b
tqg= 7" = —q
PUTa= o +q) +d = prtq+d !
apx +aq+b— cepgr — cq® — dg
N cpr + cq + d
pr(a—cq)+b+qla—cqg—d)
Y= cpr +cqg+d '
ad — bc
2
_¢ ___ (" -
For ¢ = . we get y = ard and by setting
— -
pc

\/|ad —b d
Mandt;: a+

b= c V|ad — be|

3 d—b
we obtain y = M.

t—=x
Corollary.
i. If ad — be > 0 then g have n—periodic orbit iff
a+d

m

————==2cos—, where k=1,2,...,n— 1 and k is coprime with n,
vad — be n P

ii. If ad — bc < 0 then g always have 1—periodic orbit; 2—periodic

orbit iff @ + d = 0; and never m—periodical orbit for m > 2.

Part 5. Addition
In conclusion, we will consider a problem essentially similar
to those considered above, the solution of which demonstrates

- rka t
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a different approach.

Problem.

Let n > 2 be an integer.

Find all real numbers a such that there exist real numbers

T1,...., Tp satisfying
z1(1 —x2) = x2(l —x3) = ..... =z, 1(l—z,) =z,(1—21) =a.
Solution.

Let A be set all real numbers a such that system of equations
rr(l—zpp1) =0a,k=1,2,..,n—1
4
(4) zp(l—x1) =a

is solvable with respect to z1,....,z, € R.
Noting that for a = 0 the system (4) has obvious solution
1 =29 =..=x, =0 we assume further that a # 0.

That immediately implies that x; # 0,7 = 1,2, ...,n and

we can rewrite the system as follows:
Tpt1=h(zg),k=1,2,.,n—1

5) { ook

T—a

, where

hz)=1-2=
x T

Let by (z) :== h(x), hpt1 () = h(hy, (z)),n € N and H, be matrix of

coefficients for Mobius function h,, ( x) ,that is

anx + by, an b
o (2) = g, A o= dn> nel

Also let ho (z) := . Then Hy = (o ?) Hy =H= <1 _“) and

— . An+1 b7b+1 _ 1 —a i (¢79) b'rL _
H,w=H H, < <Cn+1 dn—i—l) - (1 O) <Cn d,) =

An+1 = Gp — ACy,

(an —ac, b, — adn) — bp+1 = by —ad, —
[27% bn Cn+1 = Ap
dnJrl - bn
(p41 = Gp — GGp—1
bn-i—l = by —ab,_1 neN
Cn+1 = Qn
dn+1 =b,
and apg = 1,a1 = ].,bo = O,bl = —
Since (a,,) and (b,) satisfies to the same recurrence and by = —a
then b, = —aa,_1,n € N.

an  —Qp_1
ap—1 —Aa0p—2
Coming back to the system (5) we can see that

xp = hg (z1),k=1,2,..,n—1 and 1 = hy, (z1),
that is x1 is solution of equation h,, (z) = .Thus A, = {a | h, (z) = z,z € R}.

AnT — Ay
Since hy (z) =1 = —— "L _ g
Op—1T — QQp—2
AnT — Alp—1 = Ap_17° — A, 27 <=

)mzzandhn(x):anw—aan—lmm

Up—1T — A0p—2

Thus, H, =

(©1985-2018 Arkady Alt 11
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(6)  an_12% —x(a, + aan_2) + aa,_1 =0,

where a,, is polynomial of a defined recursively by

Gpt1 = 0p —QGp—1,M EN ag=1a1 =1

and quadratic equation (6) is solvable in real x iff its discriminant

Dy = (an + aan_2)° — daa?_| =a?

a’a?_, —4aa?_| +2aa, o (an_1 —aa,_ o)+ (an_1 — aan,g)2 =

a?_, (1 —4a)=a?_; (1—4a) is non negative then
Ap={alai_;(1—4a) >0} =(-o0,1/4U{a|an—1 =0},n>2.

For example,

ay=1—-a,a3=1-2a,,a4=0a*>—-3a+1,a5 =a®>—3a+1—a(l—2a)=

3a® —4a+1and Ay = (—00,1/4], A3 = (—o0,1/4] U {1},

3—5 3+\/5}

2 2 2 _
ar_o + 2aanan_2 —4aa; _, +a; =

2
n
-1

Ay = (*0071/4] U{1/2}3A5 = (700’1/4] U 9 9
1

Note that for any a < 1 system (1) solvable in R.

Indeed, since

2_x4a=0 << z¢

hiz)=2 < =«

1—+1—4a 1—1—\/1—4(1}
2 ’ 2

then (z1,x9,....,x,) = (z,x,, ..., z) for any such z

is solution of (1) because for 1 = = we have

hi (1) =hg (z) =2,k =1,2,...,n.

Therefore, to complete the solution of the problem remains find
all solution of equation a,,—1 (a) =0 in real a > 1/4 for any n > 2.

1
Since a > 1/4 <= ——= < 1 then denoting

2Va

L ond b In btai
o := arccos ——= and b,, := ——— we obtain
2y/a (Va)"
a an, — aa — Gl L n + n—1 0 —
n+1 — Un — n—1 T =n+1l - n o1
Va)"tt Ve (Va)" o (ya)!
(4) bpy1—2cosa-by,+by,—1 =0,neN.
1
Since b, = c¢icosna+ cosinna and by = 1,b; = — = 2cosa
a
we obtain ¢; = 1, co = cot a and, therefore,
i 1
b,, = cosna + cot asinna = w n € N.
sin ar
Thus, for any n > 2 we have
s sin(n+1)a=0
an:an Slrl_(n+1)aandan:0 = sina # 0 =
sin « 1
4 cos? o
1
o= -
4 cos? 1 +1
n+l — g= —— k=12 .. i
k=1,2,...,n @ , km 7 P 2
1 4 cos
n+1

aqQ = ———
4 cos? o

(©1985-2018 Arkady Alt 12
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o km (n+l1—-Km=

= Jk=1,2,..,n).
n+1 n+1
Thus, for any n > 2 equation h, (x) = x solvable in R Iff

(since cos

1 n
a€ A, =(—00,1/4 U —— k=12, .., H
km
4 cos? —
n
Remark.
Of course, this problem also can be solved by following the
instructions that represented in Generalization 3 and realize
this opportunity we we will leave to readers.

- rka t
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